
Download free eBooks at bookboon.com

Go Faster!

146

Implementing the Relational Operators

10 Implementing the Relational
Operators

10.1 Introduction

I’ve now completed my tutorial overview of the basic TR model; I’ve described the core concepts (principally the Field

Values Table and the Record Reconstruction Table) in Chapters 4 and 5, and some very important reinements to those

concepts (major-to-minor orderings, condensed columns, and merged columns) in Chapters 7, 8, and 9, respectively. I’ve

also given some idea in Chapter 6 as to what’s involved in implementing the INSERT, DELETE, and UPDATE operators.

In the present chapter, I want to say a little more about what’s involved in using the TR model to implement the relational

operators restrict, project, and the rest: partly just to illustrate TR in action, as it were, and partly to reinforce my claim

that TR is indeed an excellent foundation on which to implement the relational model (even without all of the additional

reinements that I don’t intend to discuss in this introductory book—reinements that, as I’m sure you’d expect, ofer the

possibility of numerous additional improvements).

Let me say immediately that I don’t want to get into a lot of detail in what follows—I just want to indicate in outline how

certain relational operators might be implemented in terms of the TR model, and ofer some observations on the diferences

between TR and “prior art” in this regard. I’ll base my examples on the suppliers and shipments relations shown in Fig.

10.1 (a repeat of Fig. 9.9). he corresponding Field Values Table—a merged table, please note—is shown in Fig. 10.2 (a

repeat of Fig. 9.14); corresponding Record Reconstruction Tables are shown in Figs. 10.3 (a repeat of Fig. 9.11) and 10.4

(a repeat of Fig. 9.13, except that columns 2-4 have been renumbered as columns 5-7 in order to agree with the column

numbering in Fig. 10.2). Note: You might want to make a copy of these igures for subsequent reference.

Fig. 10.1: The suppliers and shipments relations S and SPJ

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

147

Implementing the Relational Operators

Fig. 10.2: Merged Field Values Table for suppliers and shipments

Fig. 10.3: Record Reconstruction Table for suppliers

Fig. 10.4: Record Reconstruction Table for shipments

One last preliminary point: I won’t bother to include any discussion of ORDER BY operations in my examples, because (a)

I think they’ve been adequately discussed in earlier chapters already, and in any case (b) ORDER BY isn’t really a relational

operator as such, inasmuch as it doesn’t produce a relation as its result (see Chapter 2, especially Sections 2.1 and 2.2).1

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

148

Implementing the Relational Operators

10.2 Restrict

Consider the following simple SQL query, which asks for a restriction of the shipments relation to just those tuples in

which the shipment quantity is 200 (an equality restriction):

SELECT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY

FROM SPJ

WHERE SPJ.QTY = 200 ;

To implement this query, we2 can start by doing a binary search on column QTY of the Field Values Table (Fig. 10.2),

looking for a cell containing the value 200 (note that such a cell must be unique if it exists at all, because the column is

condensed). If the search fails, we know immediately that the result of the query is an empty relation (one with no tuples).

In the case at hand, however, the search succeeds; cell [2,7] of the Field Values Table is the one we want, and it contains,

in addition to the speciied QTY value, the row range [3:6]. It follows immediately that cells [3,7], [4,7], [5,7], and [6,7]

of the shipments Record Reconstruction Table:

a) Contain row numbers for the cell in the merged Field Values Table that contains the QTY value 200 (and

indeed they do all include the row number 2), and

b) Contain row numbers for the “next” cell in the shipments Record Reconstruction Table.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Go Faster!

149

Implementing the Relational Operators

Zigzags can therefore be constructed by following the appropriate pointer rings in the shipments Record Reconstruction

Table. In the example, those zigzags look like this:

•	 [3,7], [1,1], [2,5], [2,6]

•	 [4,7], [3,1], [3,5], [3,6]

•	 [5,7], [8,1], [7,5], [4,6]

•	 [6,7], [9,1], [9,5], [6,6]

Following these zigzags through the shipments Record Reconstruction Table and accessing the merged Field Values Table

accordingly, we obtain the desired result:

For a second example, let’s modify the query so that it involves a “less-than” comparison instead of an “equals” one:

SELECT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY

FROM SPJ

WHERE SPJ.QTY < 150 ;

It should be clear that this query too is easily handled, this time by:

a) Doing a sequential search (instead of a binary one) on column QTY of the Field Values Table;

b) Reconstructing all corresponding records, and hence user-level tuples, for each cell encountered during that

search; and

c) Stopping as soon as we ind a cell in column QTY of the Field Values Table that contains a QTY value of 150

or greater.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

150

Implementing the Relational Operators

Here’s the result:

Now consider this query:

SELECT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY

FROM SPJ

WHERE SPJ.S# = S#(‘S3’) AND SPJ.QTY = 100 ;

Here the WHERE clause involves two separate equality comparisons ANDed together. By means of searches on the S# and

QTY columns of the Field Values Table, however, we can easily discover, from the applicable row ranges, that there are

four shipments with supplier number S3 but only two with quantity 100. he best strategy is therefore to use the zigzags

associated with quantity 100 and check during record reconstruction to see whether the supplier number is S3, stopping

reconstruction of the record in question if it isn’t.3 Here’s the result:

Finally, let’s consider the efect of replacing the AND by an OR:

SELECT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY

FROM SPJ

WHERE SPJ.S# = S#(‘S3’) OR SPJ.QTY = 100 ;

We can implement this query by, irst, inding all tuples for supplier S3, and then inding all tuples not already found in

the irst step that have QTY value 100 (or the other way around). Assuming, reasonably enough, that the two steps are

executed in such a manner that the two results produced are ordered in the same way (in ascending S# order, say), then

they can simply be merged to produce the desired overall result. hat result looks like this:

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

151

Implementing the Relational Operators

One happy—but novel—result of the foregoing is that, loosely speaking, OR and UNION have the same performance

characteristics. hat is, the following logically equivalent SQL query should be implemented in exactly the same way (and

therefore exhibit exactly the same performance) as the one shown above:

SELECT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY

FROM SPJ

WHERE SPJ.S# = S#(‘S3’)

UNION

SELECT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY

FROM SPJ

WHERE SPJ.QTY = 100 ;

Let me close the present section by contrasting the implementation approaches sketched above with what direct-image

systems typically have to do. In general, such systems don’t have the same kind of exact cardinality information that TR

does;4 to be speciic, they typically don’t know exactly how many tuples have a given value for a given attribute at a given

time. Instead, they have to execute some kind of statistics utility every so oten in order to compute those cardinalities, and

then store them away somewhere. For example, in IBM’s DB2 product [45], the utility in question is called RUNSTATS,

and the computed statistics—cardinalities and other similar information—are stored in the DB2 catalog. Typically, the

database administrator will ask for RUNSTATS to be executed whenever the database is reorganized or whenever it’s

been heavily updated. Quite apart from the overhead involved in actually running the utility, the fact is that computed

values will naturally be out of date and inaccurate much of the time, and the optimizer might thus fail to choose the best

strategy for implementing the query.

Note: You might reasonably object that the statistics will be out of date with TR too, if the implementation compiles user

requests ahead of time (as DB2 and certain other SQL systems in fact do), instead of when those requests are actually

executed. he point is, however, that the access path selection process is so simple and straightforward in TR that there’s

very little point in compiling requests ahead of time—not to mention the fact that TR will almost certainly select the

access path that genuinely is optimal. his state of afairs is in strong contrast to “prior art,” where the optimizer has to

do a great deal of computation and yet still fails, frequently, to come up with the overall best access path.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

152

Implementing the Relational Operators

10.3 Project

Here’s an SQL example of a query involving projection (“Project the shipments relation over attributes S#, P#, and J#”):

SELECT SPJ.S#, SPJ.P#, SPJ.J#

FROM SPJ ;

Implementing this query is straightforward; essentially, we just go through the usual ile reconstruction process for

shipments, but skip the reconstruction step for attribute QTY in each record. Here’s the result:

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Go Faster!

153

Implementing the Relational Operators

However, you might have noticed that I was cheating a little in this example. Since the attributes over which the projection

is taken—that is, the attributes that aren’t “projected away”—include all of the attributes of the sole key {S#,P#,J#} for

relation SPJ, we know ahead of time that the query can’t possibly produce any duplicate tuples. But suppose I change the

query slightly, thus:

SELECT SPJ.S#, SPJ.P#

FROM SPJ ;

If you examine the previous result, you’ll see that:

a) here are two tuples that both contain supplier number S2 and part number P1, and

b) here are two tuples that both contain supplier number S3 and part number P3,

and so it looks as if this query ought to produce a result that looks like this:

As a matter of fact, this is the result that SQL would give. However, that result is not a relation—it includes duplicate

tuples (lagged above with asterisks). In particular, it has no candidate key, and a fortiori no primary key (notice that I

haven’t shown any attributes with double underlining).

Of course, TR can certainly produce this nonrelational result if desired—I mean, it can be used to implement SQL systems

as well as relational ones, as already mentioned in Chapter 3—but I’m interested here in implementing relational operations

speciically. In order to request the true relational projection operation (to obtain the true relational result) in an SQL

system, we would have to amend the query to include the speciication DISTINCT, as follows:5

SELECT DISTINCT SPJ.S#, SPJ.P#

FROM SPJ ;

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

154

Implementing the Relational Operators

he implementation of this revised query is essentially the same as before, except that the system should if possible process

the Record Reconstruction Table for shipments in a sequence that will deliver tuples according to the major-to-minor

ordering S#-then-P# (or P#-then-S#). In the example, this ordering is obtained by processing the Record Reconstruction

Table (Fig. 10.4) in sequence by the S# column. Duplicates will be adjacent in this ordering and thus can easily be

eliminated. he inal result is:

Actually, this result can be obtained more directly from the Record Reconstruction Table for shipments (that is, without

irst constructing and then explicitly eliminating duplicates). Here are the irst two columns of that table, extracted from

Fig. 10.4:

Now consider (by way of example) supplier S2. From the row range [3:5] for this supplier in the Field Values Table

(Fig 10.2), we know among other things that the rows of the shipments Record Reconstruction Table that apply to this

supplier are rows 3, 4, and 5—that is, the applicable cells of that table are [3,1], [4,1], and [5,1], respectively. hese cells

happen to contain “next cell” row numbers 3, 4, and 5, respectively (see Fig. 10.4), and so the “next” cells in the Record

Reconstruction Table, according to the usual zigzags, are cells [3,5], [4,5], and [5,5], respectively. And these latter cells

contain pointers to the Field Values Table rows 1, 1, and 2, respectively. It’s thus immediately clear that there are only two

distinct part numbers corresponding to supplier S2—the one in the Field Values Table cell [1,5], which is P1, and the one

in the Field Values Table cell [2,5], which is P2.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

155

Implementing the Relational Operators

I’ll close this section by pointing out explicitly that the example we’ve been discussing illustrates another important

application of the major-to-minor orderings discussed in detail in Chapter 7. To be speciic, such orderings can be very

helpful in implementing the internal-level operation of eliminating duplicates. In general, duplicate elimination is required

in connection with projection operations (as we’ve just seen), also with union operations (see Section 10.7) and certain

aggregation operations (see Section 10.5).

10.4 Extend

You might possibly not be familiar with the relational extend operator (the term “extend” isn’t used in SQL contexts,

at least not with the meaning intended here, though SQL does provide the desired functionality). Basically, the extend

operator takes a relation and returns a relation containing an extended form of each tuple from the given relation, where

the extension in each case consists of an additional attribute value that’s computed in accordance with some speciied

computational expression. Here’s an—admittedly rather contrived—SQL example:

SELECT DISTINCT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY,

 ((2 * SPJ.QTY) ‑ 150) AS XXX

FROM SPJ ;

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2015

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Go Faster!

156

Implementing the Relational Operators

Result:

he only point I want to make in connection with this example is that if we know this query is going to be executed fairly

frequently, then we can treat the “computed” attribute XXX just like the regular (“base”) attributes S#, P#, and so on; to be

speciic, we can map it to a column of its own in the Field Values Table. hat column can then be sorted and condensed

(possibly even merged), just like other such columns, and analogous beneits—fast binary search, use in major-to-minor

orderings, and so on—will then immediately accrue.

How then can we know whether a given query will be frequently executed? Well, one possibility is to let the database

administrator tell us, of course. Another is to guess ... If the foregoing SQL query is speciied as the deining expression

for a view, as here—

CREATE VIEW XSPJ

 AS SELECT DISTINCT SPJ.S#, SPJ.P#, SPJ.J#, SPJ.QTY,

 ((2 * SPJ.QTY) ‑ 150) AS XXX

 FROM SPJ ;

—then it’s a pretty safe bet that the query is indeed going to be executed fairly frequently.

10.5 Summarize

Summarize is the relational operator that underpins SQL’s aggregation and GROUP BY operations. Here’s an SQL example:

SELECT DISTINCT SPJ.S#, COUNT(*) AS SHIP_COUNT

FROM SPJ

GROUP BY SPJ.S# ;

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

157

Implementing the Relational Operators

he efect of this query is to “summarize” the shipments relation in a certain way. To be speciic, it returns a relation that

contains a tuple for each distinct supplier number in SPJ, giving a count (SHIP_COUNT) of the number of shipments

the supplier in question is involved in. he result looks like this:

Observe now that this result is directly obtainable from the S# column of the Field Values Table. Here is that column,

extracted from Fig. 10.2:

Recall that the row ranges indicate (among other things) which rows of the uncondensed Field Values Table for shipments

the corresponding supplier number would appear in, if such a table were actually to be built. hus we can see immediately

that there are two shipments for supplier S1, three for supplier S2, four for supplier S3, and none at all for suppliers S4

and S5.6 Note, however, that the result doesn’t include tuples for suppliers S4 and S5 (with zero counts), because the

SQL query speciied “FROM SPJ,” and suppliers S4 and S5 don’t appear in relation SPJ at all. A relational query using

SUMMARIZE that does include suppliers S4 and S5 in the result can easily be formulated (and easily implemented in

TR). An SQL query to do the same thing can be formulated too, but the speciics are rather more complicated, and the

details are beyond the scope of this book; for more discussion, see reference [32].

By the way, it would make no diference to either the meaning or the result of the foregoing SQL query if we were to replace

the COUNT argument “*” by SPJ.P#, or SPJ.J#, or SPJ.QTY, or SPJ.QTY + 1, or indeed by just about any other syntactically

valid expression you can think of—unless the expression in question is preceded by the speciication DISTINCT, as here:

SELECT DISTINCT SPJ.S#, COUNT (DISTINCT SPJ.P#) AS PART_COUNT

FROM SPJ

GROUP BY SPJ.S# ;

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

158

Implementing the Relational Operators

he efect of this revised query is to return a relation that contains a tuple for each distinct supplier number in SPJ, giving

a count NP of the number of distinct parts the supplier in question is shipping, thus:

his revised query requires a revised implementation, too: Basically, the system now needs to use the Record Reconstruction

Table for shipments, processing it in a sequence that will deliver tuples according to the major-to-minor ordering S#-

then-P#. Duplicate part numbers for a given supplier will be adjacent in this ordering and thus can easily be eliminated

from the corresponding count. (As in the case of projection—see Section 10.3—it shouldn’t be necessary actually to

materialize the duplicates before eliminating them; the necessary information can in fact be obtained directly from the

Record Reconstruction Table.)

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Go Faster!

159

Implementing the Relational Operators

Let’s consider some of the other aggregate operators. MAX and MIN are easy enough. For example, consider the SQL query:

SELECT DISTINCT SPJ.S#, MIN (SPJ.QTY) AS MNQ

FROM SPJ

GROUP BY SPJ.S# ;

Here’s the result:

To see how this query is implemented, consider supplier S2 once again. As we already know (see the discussion of projection

in Section 10.3), the cells in the shipments Record Reconstruction Table that correspond to this supplier number are [3,1],

[4,1], and [5,1], respectively. Following the zigzags to the corresponding QTY cells in that table, we ind that those cells

contain pointers to the Field Values Table rows 2, 3, and 3, respectively. Since the QTY column (like all columns) in that

table is kept in ascending order, it’s immediately clear that the minimum QTY value for supplier S2 is the one in row 2

of the Field Values Table—namely, the QTY value 200.

Note: It should be obvious that it makes no diference in the case of MAX and MIN whether or not the argument to the

aggregate operator includes a DISTINCT speciication.

Other aggregate operators for which TR technology is particularly suited include MEDIAN and MODE. In case you’re

unfamiliar with these operators, let me explain them briely here. Suppose we’re given a collection of values, possibly

including duplicates. hen the median of that collection is the value that appears in the middle position when the values

are sorted, while the mode is the value that appears the most frequently. (Of course, these deinitions require certain

reinements, beyond the scope of this book, in order to take care of the question of ties and the like, but you get the

general idea.) I’ll leave it to you to igure out the corresponding TR implementation in each case.

10.6 Join

he join operation is oten regarded as the sine qua non of relational systems.7 Certainly it’s extremely important; some

might even say that relational systems stand or fall on the basis of how well—how efectively, how eiciently—they

implement joins. What’s more, there’s a widespread perception that joins must perform poorly, almost by deinition. Here’s

a typical quote (from an article critizing relational systems in general and the proposals of reference [40] in particular):

“Database application developers ... have been baled by the intolerable performance [incurred] ... by performing joins”

[54]. And reference [63] has this to say:

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

160

Implementing the Relational Operators

In prior art database systems, joins tend to be extremely costly in storage space and/or processing time, requiring

either preindexed data to maintain sortedness or a time-intensive search involving multiple passes over the

entirety of each attribute that is being joined.

—from the Initial Patent

Let’s take a closer look. Reference [32] describes a variety of techniques for implementing joins, the following among them:

n Brute force n Merge

n Index lookup n Hash

n Hash lookup n Various combinations of the foregoing

Let me focus irst on the brute force technique. Let r and s be the relations to be joined; let r and s have M tuples and N

tuples, respectively, and let them have just one common attribute, A.8 Let R and S be direct-image stored iles corresponding

to r and s, respectively, with stored records, in sequence, R[1], R[2], ..., R[M] and S[1], S[2], ..., S[N], again respectively.

Here then is the brute force algorithm:

do i := 1 to M ;

 do j := 1 to N ;

 if R[i].A = S[j].A then

 append joined record R[i] * S[j] to result ;

 end ;

end ;

(I’m using the expression R[i] * S[j] to denote the joined record that’s formed from the records R[i] and S[j].)

As you can see, the brute force technique is very simple-minded—basically, it just examines all possible combinations

of records, one from R and one from S, and joins them together if and only if they have the same value for the common

attribute A (or for the stored ield corresponding to the common attribute A, rather). Note: he brute force algorithm

is oten referred to as “nested loops,” but this name is misleading because nested loops are in fact involved in all of the

conventional implementation algorithms.

Now, it should be obvious that the brute force approach involves a total of M*N record read operations. It should also

be obvious that if we wanted to join three relations, r, s, and t, say, then the brute force approach will involve M*N*P

record reads (where P is the number of tuples in t), and so on. In other words, the costs associated with the brute force

algorithm are inherently multiplicative in nature. For that reason, that algorithm is generally regarded as the worst case,

which is precisely why so much energy has been expended over the past 30 years or so on alternative approaches (index

lookup, hash lookup, and the rest).

I don’t want to go into a lot of detail on those alternative approaches here. Suice it to say that they’re all aimed, in one

way or another, toward the goal of never having to read any record twice—or, preferably, toward the more demanding

goal of being able to read each stored ile in sequence just once (clearly an optimal state of afairs).

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

161

Implementing the Relational Operators

•	 For example, indexes or hashes on R.A and S.A could certainly mean that no record of either R or S is ever

read twice. However, they probably wouldn’t mean that the stored iles are read in sequence just once, as I

pointed out in Chapter 2. Also, of course, indexes and hashes lead to other problems, again as discussed in

Chapter 2.

•	 Alternatively, we could sort the two stored iles appropriately and then do a merge join—and merge join

does mean that each stored ile is read in sequence just once. hus, a merge join of r and s will involve

M+N record reads; a merge join of the three relations r, s, and t will involve M+N+P record reads; and so

on. In other words, the costs associated with the merge approach are inherently additive (or linear), not

multiplicative, in nature. (Of course, I’m ignoring the sort costs here, and those costs can be very signiicant

in practice.)

I’d like to emphasize the dramatic diference between linear and multiplicative costs. Suppose for simplicity that every

relation has 100,000 tuples (not at all a large number, by the way, in modern databases). hen the following table shows

the number of record reads involved in various joins implemented by merge vs. the same joins implemented by brute

force (assuming a direct-image style of implementation in both cases, of course):

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

162

Implementing the Relational Operators

Note in particular that each step (from two relations to three, from three to four, and so on) involves several orders of

magnitude performance degradation with the brute force approach. In order to emphasize the point, suppose each record

read takes ten microseconds. hen a merge join of the ive relations will take just ive seconds, while a brute force join

of the same ive relations will take over three trillion years, or some 200 times the current best estimate of the age of the

universe (!). No wonder merge join is a preferred technique ... But the trouble with merge join, of course, is that it requires

the stored iles to be sorted into appropriate sequence irst (that’s why the technique is usually called, more speciically,

sort/merge). And the beauty of the TR approach, as I’ve shown in earlier chapters, is that the stored iles are already in the

desired sort order, always. As I put it in Chapter 4, TR lets us do a sort/merge join without having to do the sort (indeed,

we saw in Chapter 9 that it might efectively let us do the join without having to do the merge either). hus, TR always

does a merge join. Note the following implications:

•	 he more relations that need to be joined, the more the gain. In other words, the more complex the query,

the more signiicant the TR advantage over direct-image systems (as already noted in Chapter 5).

•	 Because all joins are implemented the same way, we don’t have to do that complex access path selection

process that those direct-image systems do have to do.

•	 hat access path selection process that direct-image systems have to do is of dubious accuracy anyway,

because of the diiculty of estimating intermediate result sizes, among other reasons.

•	 In fact, as reference [32] shows, there can easily be a huge number of possible strategies for implementing

any given query in direct-image systems, precisely because of all the redundancies that indexes and other

auxiliary structures introduce. For this reason, those systems typically employ a variety of heuristics for

“reducing the search space”—that is, for eliminating certain strategies very early on in the access path

selection process (possibly never even considering them at all). hose heuristics in turn (a) make the

implementation still more complicated and (b) imply that a good strategy will sometimes be rejected in

favor of a bad one.

By way of example, let’s consider what’s involved in TR in implementing the following SQL query (which asks for suppliers

and shipments to be joined on supplier numbers):

SELECT DISTINCT S.S#, S.SNAME, S.STATUS, S.CITY, SPJ.P#, SPJ.J#, SPJ.QTY

FROM S, SPJ

WHERE S.S# = SPJ.S# ;

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

163

Implementing the Relational Operators

Here again is the S# column from the Field Values Table (extracted from Fig. 10.2):

From the information in this column we can see immediately that:

•	 he irst tuple of relation S (for supplier S1) joins to the irst and second tuples of relation SPJ.9 he two

joined tuples can be built by starting at cell [1,1] of the suppliers Record Reconstruction Table and cells [1,1]

and [2,1] of the shipments Record Reconstruction Table.

•	 he second tuple of relation S (for supplier S2) joins to the third, fourth, and ith tuples of relation SPJ. he

three joined tuples can be built by starting at cell [2,1] of the suppliers Record Reconstruction Table and

cells [3,1], [4,1], and [5,1] of the shipments Record Reconstruction Table.

•	 he third tuple of relation S (for supplier S3) joins to the sixth, seventh, eighth, and ninth tuples of relation

SPJ. he four joined tuples can be built by starting at cell [3,1] of the suppliers Record Reconstruction Table

and cells [6,1], [7,1], [8,1], and [9,1] of the shipments Record Reconstruction Table.

Execution of the query is now complete. Note in particular that the fourth and ith tuples of relation S (for suppliers S4

and S5) don’t join to any tuples of relation SPJ at all.

Now, I mentioned earlier in this section (by way of an endnote) that there are other kinds of joins as well as the natural

join: equijoins, greater-than joins, and so on. Here’s an SQL example of a greater-than join: to be speciic, a greater-than

join over city names between the suppliers relation S and the parts relation P from Chapter 8. Note: “Greater than” here

just means—let’s assume—“later in alphabetic ordering than” (recall our assumption in Chapter 2 that city names are

simple CHAR strings).

SELECT DISTINCT S.S#, S.SNAME, S.STATUS, S.CITY AS SCITY

 P.P#, P.PNAME, P.COLOR, P.WEIGHT, P.CITY AS PCITY

FROM S, P

WHERE S.CITY > P.CITY ;

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

164

Implementing the Relational Operators

Here’s the result:

And here are the CITY columns from the suppliers and parts Field Values Tables (suppliers on the let, parts on the right):

For convenience, let’s merge these two columns together, as follows10 (the irst row range for each city corresponds to

suppliers and the second to parts):

It’s clear from this merged column that the “fourth” and “ith” supplier tuples both join to each of the “irst,” “second,”

“third,” and “fourth” part tuples—where “fourth,” ith,” etc., are to be interpreted in terms of CITY ordering in both

cases—and nothing else joins to anything else. hus, I think you can see that the desired greater-than join can again be

implemented by a kind of merging process, although the details are a little more complicated than they are in the natural

join case; in particular, several passes are needed over the row ranges for either parts or suppliers (not both). Note: his

latter fact might be a good reason for physically storing row ranges in a table of their own, separate from the Field Values

Table, as suggested in Chapter 8.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

165

Implementing the Relational Operators

10.7 Union, Intersect, and Diference

he relational operators union, intersect, and diference all require their two input relations to have exactly the same

attributes [33]. As a basis for my examples in this section, therefore, I’ll consider the projections of the suppliers and parts

relations on their CITY attributes (since those two projections certainly do have exactly the same attributes). Here then

are some SQL examples, with corresponding results:

Note that SQL uses the keyword EXCEPT to denote the relational diference operator. Note too that UNION, INTERSECT,

and EXCEPT—unlike SELECT—all eliminate duplicates by default in SQL (implying that all of the DISTINCT operators

shown above are in fact logically unnecessary).

Here now, repeated from the previous section, is a merged Field Values Table CITY column (supplier row ranges on the

let, part row ranges on the right):

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

166

Implementing the Relational Operators

he use of this merged column in implementing the foregoing union, intersect, and diference operations should be

obvious. In essence:

•	 Union: A given city name appears in the result if and only if it has a nonempty row range for suppliers or

parts or both. In other words, the union is just the set of all city names in the merged column.

•	 Intersect: A given city name appears in the result if and only if it has a nonempty row range for both

suppliers and parts.

•	 Diference: For the diference between supplier cities and part cities, in that order, a given city name appears

in the result if and only if it has a nonempty row range for suppliers and an empty one for parts. Similarly,

for the diference between part cities and supplier cities, in that order, a given city name appears in the result

if and only if it has a nonempty row range for parts and an empty one for suppliers.

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your

topic area. Find out what you can do to improve

the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Go Faster!

167

Implementing the Relational Operators

All of these operations can clearly be implemented in a single pass over the merged Field Values Table CITY column.

Incidentally, if that CITY column contains a large number of entries, the performance of intersect and diference operations,

at least, might be improved by means of bitmaps. In the example, we would have two such bitmaps, one to indicate whether

the city name in question appears in the suppliers relation and the other to indicate whether it appears in the parts relation.

Here’s a modiied version of the merged column that includes such bitmaps (1 = yes, 0 = no):11

he city names appearing in the intersection can now be pinpointed by executing a logical AND on the two bitmaps, while

those appearing in the diference between supplier cities and part cities, in that order, can be pinpointed by executing a

logical AND on the suppliers bitmap and the negation (logical complement) of the parts bitmap. Since logical operations

like AND and NOT are usually supported directly in hardware, the implementation of the corresponding relational

operations now has the potential to be very fast indeed.

10.8 Materializing Derived Relations

Sometimes it’s necessary for a relational implementation to materialize some derived relation—that is, to build a concrete

representation in storage of the result of some relational expression. Just why and when such materialization might be

necessary is a question I don’t particularly want to get into here; rather, what I do want to do is examine the question of

what’s involved in performing such materialization, when it is necessary, in the case of TR speciically.

Materializing a derived relation in TR means, of course, building an appropriate set of Field Values and Record

Reconstruction Table entries for that relation. One obvious point that arises immediately, therefore, is that materialization

is likely to be easier in TR than it is in other approaches, because a single Field Values Table can efectively be shared

across several diferent relations, thanks to the merged-columns feature. In other words, it might not be necessary to build

a new Field Values Table for the derived relation at all, in which case it could be argued that materialization as such isn’t

really being done (because it’s simply not needed). hese remarks apply directly to the monadic case, where the derived

relation is obtained by means of some monadic relational operator (restrict, project, extend, summarize); they might

possibly also apply to the dyadic case, where the derived relation is obtained by means of some dyadic relational operator

(join, union, intersect, diference). Note: I’m using the terms monadic and dyadic here to refer to relational operators that

take one relational operand and two relational operands, respectively.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

168

Implementing the Relational Operators

Let’s now make the worst-case assumption; that is, let’s assume that we do actually have to build a brand new Field

Values Table and a brand new Record Reconstruction Table for the derived relation in question. Suppose, for example,

that we need to materialize the result of joining suppliers and parts over city names. Well, it’s easy to see intuitively that,

in general, the biggest overhead in building a Field Values Table and a Record Reconstruction Table is all the sorting of

ield values that’s required. But in the case at hand, most if not all of the sorting has already been done—every column of

the suppliers Field Values Table is already in sorted order, and the same is true of every column of the parts Field Values

Table as well. Analogous remarks apply to the other relational operators, of course. (As a matter of fact, they even apply

to some extent to the pointer values in the corresponding Record Reconstruction Tables also; they too tend to be sorted,

at least partially. See, for example, the Record Reconstruction Table shown in Fig. 7.4 in Chapter 7, also the remarks on

this topic at the end of Section 7.5 in that same chapter.)

In a nutshell, then, materialization in TR (a) is needed less oten than it is in traditional implementations and (b) is more

eicient, when it is needed, than it is in traditional implementations.

10.9 A Note Regarding Optimization

his brings me to the end of my discussion of how relational operators can be implemented using the TR model. However,

there are still a few topics—three of them, to be precise—that I’d like to say something about, briely, before I close the

chapter. he irst has to do with the system optimizer.

he optimizer is, of course, that component of the system that decides how to implement any given user request. Now, I’ve

suggested at numerous points in previous discussions, both in this chapter and in several earlier chapters, that TR makes

life easier for the optimizer; to be speciic, it makes the access path selection process easier (even completely unnecessary,

in some cases). However, I don’t want to give the impression that the optimizer is no longer necessary. he fact is, there

are two broad facets to the optimizer’s job, both of them (in general) important, access path selection and expression

transformation (sometimes called query rewrite). And even if access path selection does become unnecessary (or almost

so), query rewrite does not.

Query rewrite is the process of converting a given relational expression into another such expression that (a) is logically

equivalent to the original one, in the sense that it’s guaranteed to produce the same result when evaluated, but (b) has a

good likelihood of being more eicient—that is, performing better—than the original one. I’ll give just one simple example

(expressed in SQL for reasons of familiarity): he expression

SELECT DISTINCT X.CITY

FROM (SELECT DISTINCT S.S#, S.STATUS, S.CITY

 FROM S) AS X ;

(a projection of a projection) can be “rewritten” as the simpler expression

SELECT DISTINCT X.CITY

FROM S AS X ;

he rewrite has eliminated one of the projections, and that’s why the result is more eicient.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

169

Implementing the Relational Operators

Note: You might be thinking that the foregoing example is somewhat contrived (“no user in his or her right mind would

state the query in the irst form anyway”—right?). In fact, however, the example is quite realistic. Suppose we have the

following view:

CREATE VIEW X

 AS SELECT DISTINCT S.S#, S.STATUS, S.CITY

 FROM S ;

And suppose the user issues the following query:

SELECT DISTINCT X.CITY

FROM X ;

hen the irst thing the system does in processing this query is (in efect) convert it into the following:

SELECT DISTINCT X.CITY

FROM (SELECT DISTINCT S.S#, S.STATUS, S.CITY

 FROM S) AS X ;

Rewriting this query as previously suggested is thus clearly very desirable.

hat said, I should now make it clear that query rewrite is not a TR responsibility as such; rather, it’s a task that needs to

be performed by code that sits above the TR level. For that reason, I don’t want to discuss it any further here.

10.10 A Note Regarding Constraints

he second piece of uninished business has to do with integrity constraints. Such constraints are vitally important, both

in theory and in practice (see reference [36]), yet I’ve said almost nothing about them in this book so far, and it would

be very remiss of me to ignore them altogether.

Basically, an integrity constraint is a conditional expression (also known as a boolean, truth-valued, or logical expression)

that’s required to evaluate to true. Here are a few examples, expressed in natural language for simplicity:

1. Every supplier status value is in the range 1 to 100 inclusive.

2. Every part weight is greater than zero.

3. Every supplier in London has status 20.

4. If there are any parts at all, at least one of them is blue.

5. No two distinct suppliers have the same supplier number.

6. Every shipment involves an existing supplier.

7. No supplier with status less than 20 supplies any part in a quantity greater than 500.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

170

Implementing the Relational Operators

And so on.

Of course, it’s the job of the database administrator to state such constraints (using SQL or some other formal language),12

and it’s the job of the DBMS to implement them. But implementing constraints isn’t the same thing as implementing

the relational operators; in fact, the system component that implements constraints will in all likelihood make use of the

relational operators to do so, and therefore will have to invoke the lower-level component that does implement those

relational operators. In a TR system, in other words, many constraints—perhaps most—will be implemented by code that

sits, not on top of the TR level directly, but on top of the relational operator implementation level that does sit on top

of the TR level directly. hat’s basically why I haven’t had much to say about constraints in this book prior to this point.

I must now immediately add that there are likely to be some exceptions—rather important ones—to the foregoing.

Consider again the following example:

5. No two distinct suppliers have the same supplier number.

By 2020, wind could provide one-tenth of our planet’s

electricity needs. Already today, SKF’s innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-

nance. These can be reduced dramatically thanks to our

systems for on-line condition monitoring and automatic

lubrication. We help make it more economical to create

cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,

industries can boost performance beyond expectations.

Therefore we need the best employees who can

meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Go Faster!

171

Implementing the Relational Operators

he formal statement of this constraint is, of course, simply a speciication to the efect that {S#} is a key—more precisely,

a candidate key—for the suppliers relation, and the implementation has to guarantee that no two supplier tuples appearing

in the suppliers relation at the same time ever have the same supplier number. But as I explained in Chapter 6 (Section

6.5), this guarantee is efectively built into the implementation of the INSERT operator (the UPDATE operator too, as a

matter of fact). To repeat the example from that section, suppose we try to insert a supplier tuple for supplier S9. At the

TR level, then, the system will have to inspect the supplier number column in the Field Values Table (probably using a

binary search), looking for the appropriate insert point for the new supplier number S9; and if it discovers that the supplier

number value S9 already exists, then clearly it can reject the INSERT (or UPDATE). In other words, key constraints can

and will efectively be implemented directly at the TR level.

he second example I want to discuss is this one:

6. Every shipment involves an existing supplier.

he formal statement of this constraint is a speciication to the efect that {S#} in the shipments relation SPJ is a foreign

key referencing the candidate key {S#} of the suppliers relation S (every supplier number currently appearing in SPJ

must currently appear in S as well). And the point I want to make here is this: If the Field Values Tables for suppliers

and shipments are merged on their S# column, as shown in Fig. 10.2, then the mechanism for enforcing this foreign key

constraint for shipments is very similar to that discussed above for enforcing the candidate key constraint for suppliers.

In other words, foreign key constraints too can, and probably will, efectively be implemented directly at the TR level.

It’s appropriate to close this section by mentioning that in direct-image systems, both candidate and foreign key constraints

are typically enforced by means of indexes, or sometimes by hashes or other auxiliary structures.

10.11 What's Missing?

he third and last piece of uninished business has to do with missing information. Examples of missing information

include such things as “date of birth unknown,” “speaker to be announced,” “present address not known,” and so on.

And as you probably know, SQL systems in particular address this issue—or attempt to address it, rather—by means of

a construct called a null. For example, suppose we know some particular part exists, but we don’t know its weight. hen

we might say, loosely, that “the weight is null”—meaning, more precisely, that (a) we do know the part has a weight,

because all parts have a weight, but (b) to repeat, we don’t know what that weight is. So we can’t put any sensible value at

all in the WEIGHT position within the pertinent tuple; instead, therefore, we lag or mark that position as “being null.”

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

172

Implementing the Relational Operators

Now, you’ve probably noticed that I’ve said essentially nothing about this topic in this book prior to this point. And the

major reason for that omission is that, so far as I’m concerned, nulls in the foregoing sense have absolutely no place in

the relational model—and, of course, I’ve been concentrating in this book so far on the application of TR concepts to

implementing the relational model speciically. I don’t want to get into a lot of detail here as to why I—and indeed most

other writers on the relational model, though not all [38]—reject nulls categorically; this book would be the wrong forum

for such a discussion. Let me just say, therefore, that:

a) here are very sound reasons, both theoretical and practical,13 for not including nulls in the relational model

itself. See references [18], [32], [40], [43-44], and especially [58] for a discussion of some of the theoretical

reasons, and references [18-19] and [22-23] for a discussion of some of the practical ones.

b) here are also very sound reasons for not using nulls, even when they’re supported, as they are in SQL.

hus, I recommend strongly that, even if you have to use SQL, you don’t try to “take advantage of ” the

nulls feature of that language. In other words, nulls are contraindicated even when they’re supported. See

references [17], [32], and [39] for arguments in support of this position.

Given the foregoing state of afairs, I don’t propose to discuss the use of TR to implement an SQL-style nulls feature at

all. I’ll just say that—of course—TR can be used to implement such a feature if desired, and that many of the advantages

I’ve been claiming for a TR implementation of the relational model would apply to such an implementation, too. So yes,

TR can be used to implement SQL as well as the relational model.14

Endnotes

1. If you happen to be familiar with the relational model, you might notice another omission, too: here’s no

discussion of the relational divide operator. One reason for this omission (not the only one) is that I’ll be

arguing in Chapter 15 that relational comparisons really ought to be supported. If they are, then the divide

operator becomes logically unnecessary [40].

2. I’ll use the term “we” throughout this chapter, a trile sloppily, to mean either the DBMS designers and

implementers or the DBMS itself, as the context demands.

3. Checking the supplier number will be quite speedy, too, because column S# and column QTY happen to be

logically adjacent within those zigzags. See the remarks on this subject at the very end of Chapter 5.

4. he cardinality of a set is the number of elements the set contains.

5. As I’ve written elsewhere [17], my own recommendation would be that users shouldn’t have to waste

time thinking about whether a given SQL query can produce duplicates or not but should always specify

DISTINCT, and leave it to the system to igure out when such a speciication can safely be ignored. Of

course, I haven’t followed my own advice in this respect in this book so far!—but I’ll do so from this point

forward (you might like to try the exercise of iguring out in each case whether the DISTINCT can safely be

ignored). To quote Hugh Darwen [11]: “If you have to use ... DISTINCT to obtain a true [relational result],

do not fail to do so, but be annoyed about it” (my italics).

6. Intuitively, the reason COUNT and the other aggregate operators discussed in the present section can be so

easily and eiciently implemented in TR is because—as noted in Chapter 8, Section 8.2—the row ranges in

the Field Values Table can efectively be regarded as histograms.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

173

Implementing the Relational Operators

7. As you might have already noticed, I use the unqualiied term join to mean the natural join speciically

[33,40]. his practice is both common and convenient in relational contexts. However, other kinds of joins

do exist: equijoins, greater-than joins, and so on (see reference [32]). I’ll have a little more to say regarding

these other kinds of joins toward the end of the present section.

8. I make this assumption for simplicity only. Everything said regarding TR in this section extends gracefully

and straightforwardly to the case where there are two or more common attributes (recall from Chapter 9,

Section 9.4, that the TR model efectively already includes a means by which two or more attributes can

be treated as a single “combined” attribute if desired). Analogous remarks apply to other operators also,

including in particular union, intersect, and diference (see Section 10.7).

9. See the remarks at the end of Section 9.2 in Chapter 9 for an explanation of what I mean by expressions like

“the irst tuple of relation S” and “the irst and second tuples of relation SPJ.”

10. In fact, the TR join implementation process will do this automatically, if the columns haven’t been merged

already. Of course, the merging does mean that changes will be required to the corresponding Record

Reconstruction Tables, too, but those changes are essentially trivial.

11. he bitmaps are logically redundant, of course. Also, they’re nothing to do with bitmap indexing, a topic that

was mentioned in passing in Chapter 2 (Section 2.3).

12. All of the examples shown can in fact be formulated in SQL [39]. I omit such formulations for brevity.

13. Actually I believe theoretical reasons are practical ones, but that’s another big discussion I don’t want to get

into here.

14. It’s appropriate to add that TR is probably much better suited to implementing a truly relational solution—

which isn’t what the SQL “solution” is!—to the problem of missing information (thanks to Hugh Darwen for

this observation). See references [43-44] and [58].

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

